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Smooth Phase in the One-Dimensional Discrete 
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We consider the one-dimensional discrete Gaussian model with interaction 
energy g satisfying g(i,j)= g ( i - j ) ~  1~(i-j) 2 and prove that for the inverse 
temperature fl> 1 this system displays a smooth phase characterized by 
( (n~0 - ny0) 2 ) ~< C < ~ if the nearest neighbor coupling g( 1 ) is sufficiently large. 
Our method also allows us to treat the 1/(i- j)  2 Ising model and reproves the 
existence of spontaneous magnetization under the above conditions. 

KEY WORDS: Smooth phase; critical temperature; multiscale analysis, 
Peierls expansion. 

1. I N T R O D U C T I O N  

We cons ide r  the o n e - d i m e n s i o n a l  discrete G a u s s i a n  m o d e l  with i n t e r ac t i on  

energy  g(i, j )  given by  a pos i t ive  func t i on  sat isfying 

1 
g ( i , j ) = g ( i - j )  ( i _ j ) 2  as l i - j l ~ o o  

A c o n f i g u r a t i o n  of this m o d e l  is a f unc t i on  n = {n~}j~ z,  where  n j ~  Z 
represen ts  the he ight  of a interface at j .  T o  each c o n f i g u r a t i o n  the energy  

H A is g iven  by  

1 
HA(n) = ~ ~ g(i, j ) ( n i -  nj) 2 (1.1) 

I , j  
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1320 Marchett i  

where we impose the boundary condition 

n j = 0  for any j C A  (1.2) 

with A being a finite interval in Z. 
The equilibrium state of this system is defined by the Gibbs measure 

/~A on the space of all configurations 

where 

1 e_~n~(~) (1.3) = 

ZA = ~ e-~nA(") (1.4) 
n 

is the partition function. Expectations with respect to this measure will be 
denoted by 

(-)A = 2 pA(n) 
n 

and by ( - }  = lim A ~ ~ ( . ) A  we mean their thermodynamic limit. The limit 
exists by correlation inequalitiesff ) 

We will be interested in the behavior of the correlation functions, so 
let us introduce the external height expectation defined by 

where 

(en(h)}A = ZA(h) (1.5) 
ZA 

ZA(h) = ~ en(h)e -~"A(n) (1.6) 
n 

is the external height partition function, n ( h ) = Z k ~ z n k h k ,  and h is the 
external height density typically given as follows. 

1. The one-point external height density 

h k .= h~ xo 

2. The two-point external height density 

hk = h~ -- 5k, y0) 

with Xo, Yo e A and h ~ e R. 
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This model has been recently examined by Fr6hlich and Zegarlinski (1) 
in connection with the localization of a quantum mechanical particle in a 
one-dimensional periodic potential coupled to a quantum 1/f-noise. In that 
paper they established a phase transition in the sense that there exist 
0 < ff ~ fl < o% depending on the interaction energy g, such that for the 
inverse temperature fi < _fi the discrete Gaussian displays a rough phase 
with 

((nxo-nyo) 2) >~ Clog tXo- Yo[ (1.7) 

and for the inverse temperature fi > fl there exists a smooth phase charac- 
terized by 

((nx o -nyo) 2) <~ C' (1.8) 

where C, C ' >  0 are fi-dependent finite constants. 
Moreover, they showed (Proposition 3.1 in ref. 1) that for fi > fl there 

exist positive constants/~ = h(fi) and C such that for the one-point external 
height density h satisfying 0 < h ~ < ki, 

(e~(h))<~eh~ e (~c 2h0>) 1 (1.9) 

which implies that the moments of a discrete Gaussian measure #(n), in the 
low-temperature phase, are bounded by 

((nx0) zr) ~< (2r)! [A(fi)]" (l.lO) 

where A > 0  is a finite constant (odd moments are zero by n ~ - n  
symmetry). 

In this paper we retrieve the low-temperature results of Fr6hlich and 
Zegarlinski and prove that the inverse temperature below which we get a 
smooth phase is at most 1 in the high-g(1) limit, where g(1) is the nearest- 
neighbor interaction energy. We also obtain in this regime an upper bound 
on the external height expectation which leads the 2rth moment (1.10) to 
be bounded by a constant to a power r times r! (instead of 2r!) and the 
two-point correlation function (1.8) to be finite. 

More precisely, we have the following result. 

T h e o r e m  1.1. (a) Let h be the one-point external height density 
such that Ih~ <fig(l). Then for any inverse temperature f i>  1 there exist 
finite positive constants ~=~( f i )  and O=O(fi) such that if g (1 )>~ ,  we 
have 

(e ~(h)) <~ exp{Oe fig(l) cosh h ~ (1.11) 
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(b) Let h be the two-point external height density such that 
Ih~ <fig(l) .  Under the above assumptions, there exists 6 = 5 ( f i ) > 0  such 
that 

(e  n(h) } <~ exp{2Oe7 ag(1) cosh h ~ exp{Oe -Bg(1) cosh h ~ [Xo - Yo[-~} (1.12) 

Notice that the right-hand sides of (1.11) and (1.12) are analytic 
functions on h ~ One can differentiate both sides at h~  0 to obtain the 
following corollary: 

Corol lary  1.2. 

for any r E N, and 

Let fl > 1 and ~ as above. Then if g(1) > ~, we have 

((nxo) 2" ) ~< C'r! 

((nx0 - ny0) 2 } ~< C' 

where C and C' are finite constants. 

Remark. The method we use to prove Theorem 1.1 is also suitable to 
study spontaneous symmetry breaking of the 1 ~ ( i - j )  2 Ising model. We 
consider the Ising Hamiltonian given by (1.1) with n = {nj= _+1 }j~z and 
boundary condition n j=  1 for al l j ( sA and show (details in Section 4) that 
for any inverse temperature fl > 1 there exist 0 = 0([3) < oc such that 

(1 -nxo } ~ Oe -~g(1) < 1 (1.13) 

provided g(1) is sufficiently large. Spontaneous magnetization in the Ising 
chain with 1 / ( i - j )  2 interaction energy was proved by FrShlich and 
Spencer (2) for the inverse temperature large enough. Imbrie and Newman (2) 
have proven (1.13), among other results, in the conditions under which we 
have stated it. 

To prove Theorem 1.1, we modify the procedure in the FrShlich- 
Zegarlinski proof. In the proof of (1.8) they extended the Peierls argument 
developed in ref. 2 for the 1~( i - j )2  Ising chain in order to control expecta- 
tions of unbounded variables. We here use an alternative procedure to 
handle this problem. As in refs. 4 and 5, expectations in the discrete 
Gaussian chain are written as a convex combination of expectations in 
diluted gases of "neutral" jump sequences of variable sizes. We then apply 
a standard Peierls argument to each term of this expansion. This goal is 
accomplished by following closely the treatment given by Marchetti et al. (5) 
(see also ref. 6) in the study of the external charge correlation functions of 
the two-dimensional Coulomb gas. 
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Our expansion consists in initially rewriting both partition functions 
(1.4) and (1.6) as a convex combination of (appropriately defined) regular 
partition functions in a given initial scale (Theorem 2.2). It is then proven 
that regular partition functions at a given scale can be written as a convex 
combination of regular partition functions at the next scale (Lemma 3.2). 

The scales we use are of the form dk+l ~ d2 with 1 < ~ < 2. At scale N, 
where N is such that du 1< IAI <~ du, each of these regular partition func- 
tions is characterized by a collection ~/" = {J} of disjoint ordered sequences 
of jumps aT, whose sizes vary from the initial scale up to the last scale N. 
This collection is such that: 

(i) Any J ~  JV" is neutral, i.e., is a jump sequence which starts and 
finishes at the same height. 

(ii) All J are weighted by an activity ~(J). 

(iii) Y satisfies an appropriately defined sparse condition. 

Items (i)-(iii) play an important role in describing the low-tem- 
perature phenomenon. Because of neutrality, jump sequences which con- 
tribute to the external height expectation <e n~h) ) are essentially those in the 
subset Z c Y of J whose support "overlaps" the support of h (Lemma 4.1). 
Taking, for example, h to be the two-point density, under the sparse condi- 
tion, )~ has at most two jump sequences in each scale and ZJ~x ~(J) is finite 
independently of N and the distance Ix o -  Yol. This means that typical 
configurations in the discrete Gaussian chain are smooth in the region of 
parameters where the expansion is valid. 

This paper is organized as follows. In Section 2 the partition function 
of the discrete Gaussian chain is rewritten as a convex combination of 
regular partition functions. This is the first step in the inductive procedure 
in Section 3. In Section 4 we perform a Peierls argument and prove 
Theorem 1.1. We consider the main contribution of this paper to be the 
possibility of treating the 1~(i- j)  2 discrete Gaussian model as well as the 
1~(i- j )  2 Ising model within the same framework. 

2. FIRST STEP 

Following ref. 5, we start by rewriting the partition function (1.4) as 
a convex combination of "regular" partition functions at the first scale. 

Notice that any configuration nA satisfying the boundary condition 
(1.2) specifies a unique sequence of jumps JA = J (nA)= {Ji}ieA*, where for 
each i E A*, Ji is the difference between two consecutive heights, i.e., 

Ji ~ ni+ 1/2 - n i -  1/2 ~ dl'li 
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and A* is the interval in the dual lattice Z* given by 

A* = { j+  1/2}j~A W {j-- 1/2}j~A 

Let )r A be the set of all jump functions JA a s  above, i.e., 

JA = {J: i e Z  ~ J~e Z: J j = 0  for ~all jCA*} 

Clearly, there exists a one-to-one correspondence between configurations 
n~ and functions J e  JA- We thus can rewrite the partition function ZA as 
in the following: 

~e--~HA{m=~ FI ( ~  6Jj, a~j) e ~HA(m 
n j ~ A *  J j e Z  

: ~  H [3o, u,;+ ~ (6j;,a,j+6-j;,a,;)]e -~>IA("} (2.1) 
n j c A *  J ; = l  

Let v > 0  and set ~q= C~e ~lql/2, where C1 is a constant chosen so 
~-2q~176 ~q= 1/2. Then, replacing the coefficient of 3o, a, / for each jeA* by 
2 ~2~=~ ~6, the partition function (2.1) can be written in the following 
form(4-6): 

F, c,z~ 
j~ jo 

where J~ for all ieA*}, 
Z:~to Cs= 1, 

z~ H 
n j ~ A *  

(2.2) 

Cj>O is such that 

[3anj, O+~Sj(6anj. Sj+(Sdnj,_jj)]e 8H~ (2.3) 

where 

(2.4) 

is the activity of the jump Jj at site j~A*, and the Hamiltonian H ~ is 
defined by 

HA(n)= g(1) ~ (dnj)2+H~ (2.5) 
j ~ A *  

We now introduce some notations. By I(j, d) we denote the interval in 
Z (or Z*), centered a t j  with side d, i.e., 

, ( j  / j, 
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Let A be a large interval centered at the origin, say A = I(0, R). For 
a fixed d ~ > l  we set A~=A~d1Z ,  and similarly A~=A*nd~Z*;  for 
j~A1 (or A*) we let I i ( j )=I(j ,  dl). 

Clearly, 

j E A *  

j s A ~  i S l l ( j )  

As in ref. 5, each term inside the curly bracket can be written as a 
convex combination of terms with the same form by using the following 
lemma: 

k e m m a  2.1. Let I be an index set with N elements and let ~ >/O 
and m s, Js ~ Z be given for each j e / .  Then 

I] [&.j,o + ~j(~,,~, + ~, . -~)]  

= ~ co[Ao(I, m) + #o(As~(I, m) + A_j~(I, rn))] 
cr ~ ~f(l) 

where fg(I) = {~: I--* {0, 1, - 1 } ;  cr ~ 0}, 

J~: ieI--* Z 

J~(i) = a i J  i 

As(I, m ) =  l~ 6,,,,s(i) 
i ~ I  

i e l  

where b~ is given by (1 + 2 /b l )  N = 3, so 

2 
b t ~  N 

and 0 < c ~  is such that Z ~ ( I )  c~= 1. 

The proof of Lemma 2.1 is essentially done in Appendix A of ref. 5. 
Just replace in the above expansion the coefficient of 1-Ij~z6mj, O by Z~ c~ 
with c~=(2I-[ ib~ ~il) 1. 

We now need some definitions. A jump density is a function J: D ~ Z 
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with domain given by an arbitrary sequence of sites in Z*; we call i~ (iD) 
the largest (smallest) site of D and set ID = liD, i + ] C~ Z*; J is said to be 
localized on the interval I(j, d) if D ~ [(L d) - I(j, 3d). 

A weighted jump density is a triple (J, ~, D), where J is a jump density 
with domain D ~ Z *  and activity ~>0.  From now on all our jump 
densities will be weighted; we will write J for the triple (J, ~, D) and will 
use ~(J) and D(J) for its corresponding activity and domain. 

Thus, from (2.2), (2.3), and (2.6) and Lemma 2.1, the partition func- 
tion ZA can be written as a convex combination of partition functions of 
the type 

H [do(I,(J), dn) + ~j(dsj(ll(j), dn) + d _jj(Ii(j), dn))] e-~H~(') (2.7) 
n j~A~ 

where Jj is a weighted jump density localized on Ii(j) with 

2 d ~-1 e-flg(1)Jj(i)2 ] 
~J~  H ~ 1 Jj(i) 3 

i~ II(j): 
Jj( i) ~ O 

where hi(D; n) =h(D; n)-- ~jeD g(1) dnj, 

1 
h(D;n)=~ ~, g(k,l)(nk--n,) 2 

k, lE l9 

for any subsetD ~ Z wi th / )  = 
Hamiltonian H i  is given by 

e flhl(ll(J);n) (2.8) 

(2.9) 

{j + 1/2}i~D w {j - 1/2}j~D. The 

H~(n) = H ~  ~ h(ll(j); rl) 
j~A~ 

Now, set 

2 
Kl=Kl(f l ,  g(1),dl)=l~g3 d 1 sup sup~qle -Bg(1)q2/3 (2.10) 

q = l , 2  .... 

We have that lima~ ~ K1 =limg(1)_~ K~ = 0  and if we pick fi and g 
such that K1 < 1, it follows from (2.8) and (2.10) that 

~j <~ K]e 2~g(1)lJjl/3 (2.11) 

where IJjl = Z,~II(j)IJj(i)l. 
We have proven the following theorem: 

T h e o r e m  2.2. Let d l >  1 be fixed. Then, if K I <  1, the partition 
function of the discrete Gaussian chain Z A can always be written as a 



Smooth Phase in 1D Discrete Gaussian Model 1327 

convex combination of partition functions of the form (2.7) with activities 
satisfying (2.11 ). 

Remark. Theorem 2.2 can be trivially extended to include the 
external height partition function ZA(h ) by just replacing (2.7) by 

[I [Ao(II(j), dn) + ~j(Ajj(Ii(j), dn) 
n jeA~ 

+ A j~(Ii(j), dn))] e~(me ZH~(./ 

3. T H E  I N D U C T I V E  S T E P  

Let us fix ~ > 1 ,  the initial scale d l = 3  rl, where r~e{3,4,...}, and 
A=I(O,R). We define the successive scales by dk+~=3  rk+t, where 
rk+l = [-~rk] (I-t] = sup{r~N:  r~< t}) and set do = 1. 

We set A~=Ac~dkZ, Ik(j)=I(j, dk) for j e A  k and I~ ' ( j )=  
Ik(j)~dk, Z for k'<~k. Notice that Ao=A and AN= {0}, where N E N  is 
such that d u 1 < R <~ d~.. 

We extend these definitions for the dual lattice Z*, which will be 
distinguished by an asterisk whenever necessary. 

Defini t ion.  Let us fix a scale k, numbers 6, 2 > 0 ,  and jeA*.  
A weighted jump density J =  (J, if, D) is (k, j, 6, 2)-admissible if 

(i) D(J)cL(j)=--I(j, 3dk) 

(ii) 0 ~< ~(J) ~< d~- 6e- ~ + 1/log dk)]JI 
(3.1) 

where IJ] =Zs~D(J)IJ( j ) l  (we allow J=-0  with D(J)~ ~ ,  but we require 
~(J)  = 0). 

A jump density J is said to be neutral if Qj ~ ~ j e D ( j ) J ( j ) :  O. 

Defini t ion.  L e t p > 2  be fixed, keN,  j eAk, and 6, 2 > 0 .  A collec- 
tion ~k,j,~,~) of neutral jump densities will be called a (k, j, 5, 2)-sparse 
neutral ensemble if: 

(i) F o r k = l ,  

• ( (  1, j ,  6, 2) ~ 

(ii) F o r k = 2 , 3  .... we have 

~ k _  ,,~,a,~)] w { (J, ~, D) } 
~(k,j,~,2) = ie i?l(j)  
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where each JV~( k ~,~,~,~) is a ( k -  1, i, 6, 2)-sparse neutral ensemble, (J, (, D) 
. t  . t  k - -  is a ( k -  1, z, 6, 2)-admissible neutral jump density for some t e I  k !(j) 

such that I(i', 5dk)~ cik(i) with (3.1) replaced by 

~ <~3 d~_le -;~lsl 

and 

Given Jf~(k,j,~,).), let 

F(Y(k,y,~,x); n) = 

2~< 171 ~ (log dk_ l )  p 

H [Ao(D(J); n) + ((J)(Aj(D(J); n) 
J E ~/'(k,j,(J,~t) 

+A _j(D(J);  n))] (3.2) 

where 

AT(D(J); n) = H 6d.~,v(y) 
j ~ D(J )  

with T =  0, J, - J .  

D e f i n i t i o n .  A collection Y of weighted jump densities is said to be 
compatible with the interval I c Z* iff: 

(i) D(J) csD(J ' )=~ for all J, J ' e ~  with J#J ' .  
(ii) [ ) s ~ D ( J ) = I .  

Def in i t i on .  Given a scale k, a (k, 6, 2)-regular jump assignment 
s~(k,~,a) is a collection of weighted jump densities compatible with A* given 
by 

where each ~/((k.j,~.a) is a (k, j, 6, 2)-sparse neutral ensemble and each 
(Jj, (j, Dj) is a (k, j, 6 + c~ - 1, 2)-admissible jump density. 

D e f i n i t i o n .  A (k, 6, 2)-regular partition function is a partition 
function of the form 

Z(k,~,~)=~ H [r(Jv((k,z~,~;n)~(Jy;n)] e P"~(") (3.3) 
n y E A  k 
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where aC(k,z,;.)= {~/((k,j.z.x~, Jj}jr is a (k, 6, 2)-regular jump assignment, 

7(J; n) = Ao(D(J); n) + ~(J)(A s(D(J); n) + A _j(D(J); n)) 

and H~(n)= ~ HA(z~(g.z.x~, n) is given by 

HkA(n) = HA(n)-  ~ h(D(J); n) 
JE,JIk,6,).) 

with h(D; n) the self-energy of J, as defined in (2.9). 
In this language, Theorem 2.2 states that, for a choice of parameters 

such that KI(/~, g(1 ), d 1) ~< d ;  ~ - ~ + 1 and 2/~g(1 )/3 - 1/log d I ~> 2, the parti- 
tion function ZA given by (1.4) can be written as a convex combination of 
(1, 6, 2)-regular partition functions. Theorem 2.2 gives the initial step in the 
inductive procedure of the following theorem: 

Theorem 3.1. Let l < ~ < 2 a n d  

~ ( ~  - 1 )  

2 - ~  
- - < 6 < / ~ ( 1 - a ) - ~  

with a = a(e, dl) such that lima1 ~ ~ a = 0. Suppose 2 ~< 2/3g(1 ) / 3 -  1/log d 1 
and K~ ~< d~ 6 ~+ 1. Then, if d~ is sufficiently large, the partition function of 
a discrete Gaussian chain ZA can always be written as a convex combina- 
tion of (k, 6, 2)-regular partition functions for any k = 1, 2,..., N. 

Theorem 3.1 follows from Theorem 2.2 and from the following result: 

Lemma 3.2. Let e, 6, 2, dl be as above. Then if dl is sufficiently 
large, any (k, 6, 2)-regular partition function can be written as a convex 
combination of (k-4- 1, 6, 2)-regular partition functions. 

Remarks. (1) Theorem 3.1 and Lemma 3.2 may include the 
external height partition function (1.6) by simply adding the term e n(h) in 
expression (3.3). 

(2) Theorem 3.1 and Lemma 3.2 may also be applied to the partition 
function ZA of the 1~(i-j) 2 Ising chain. In this case, we let n be in the set 
of configurations {nj e { 1, - 1 } }j~ z with nj = 1 for j ~ A. As the boundary 
condition breaks the symmetry n - - * - n  we need to replace, for all 
J~ {JV(k,j,a,;.), J j } j e A ; + I  , Ao(D(J); n) + ~(J)(Aj(D(J); n) + A j(D(J); n)) in 
(3.3) by its asymmetric version 

Ao(D(J); n) + ~(J) A j(D(J); n) 

where J:D(J)-+ {0, 1} is the Ising weighted flip density defined by 
dnj =- �89 [nj+ l/2-nj_ l/2[ ~ {0, 1}. 
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Proof of Lemma 3.2. Let k+{1 ,2 , . . . ,N-1}  and let {A/ik,j,~,;.>, 
Jj}j~A; be a (k, 6, 2)-regular assignment. Let Z(k,a,x) be given by (3.3). 
We have 

Z(/~,~,r ~I { IV(M/'~+ l,j,a,;.); n) 1-1 7(J~)} e-~H~("~ (3.4) 
JEA~+I ++~+l(J) 

where, for each j e  A~+ 1, 

# 
~ / ( k  + 1,j, 6,2) ~-- U ~((k,i, 6,2> 

i~/~k+ l(J) 

is, by definition, a (k + 1, j, 6, 2)-sparse neutral ensemble. 
Using Lemma 2.1, we can write (3.4) as a convex combination of 

partition functions of the form 

H [r(x~+l,/,~,~.~,n)7(JT)] exp[--flH~k+l(n)] 
n J~Ak+l 

where each J~ is of the form 

(3.5) 

for some a + f#(I~+ ,(j)), 

I 2 d~-~] I+1 
ie r l(J) 

J ?  = 2 ff iJ i  
i~Ik+l(j) 

(3.6) 

where 

hk+l(J~;n)=h(D(JT);n) - ~ h(D(J+);n) (3.7) 
ie/~k+l(J) 

and 

D~= ~ D+ 
ie:/~k+ l(j) 

Moreover, the collection ~ f f + l = { X ~ +  J#  1,/.a.).), / }S~A;+I is compatible 
with A*, i.e., 

u[ol. 
jE Ak + 1 JE~AZ(k + I,j, 6,~.) 
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and H#ak+~(n) is given by 

H~k+l(n)=HA(n)-- ~ h(D#(J);n) 

To propagate our bound on the activities ~ ,  we will need to estimate 
in some cases hk+t(J~; n). As in ref. 5, this will be done by the following 
lemma: 

# k o m m a  3.3. Let ~4k+ ~ be as above. Suppose we have for some 
jo6A*+l :  

(at) J)0 # =Ji0 for ioeI{+,(jo ) with Qjfo=q. 
(a2) I(io, 1/3d~+~)c~Df = ~  for a l l j e A * + l  w i t h j # j o .  

Then, for any N c agk#+ 1 such that Jj0 # e 

k+l #. dk+t h (J; 

where n e =  ~ j ~  n J is the configuration determined by the ensemble N, n s 
is defined by 

{ ~  J(I) if iElD(.r ) 
n[ = 2: 

otherwise 

(3.8) 

and a = a(dl, ~) is a positive constant such that limdl ~ ~ a = 0. 

Lemma 3.3 will be proven in Appendix A. 
Lemma 3.3 requires (a2), which may not be true. Notice that if there 

exist a J 7  which does not satisfy (a2), it must be either the right or the left 
neighbor of Jj0 ~ . It could also happen that J ~  violates (a2) with respect to 
both neighbors, Jj0 e and j #  satisfying (al). 

J 0  ~ 

Let us define the equivalence 

f J ~  satisfies (al); J f  does not satisfy (a2) 

j~j'.**. " ] o r  

{ J ~  satisfies (al); J~  does not satisfy (a2) 

[we a l l o w j = j ' ,  soj.-~j; we s e t j ~ j '  i f JT ,  Jj,# satisfy (al) withj..~j",j'~j" 
for some j " ] ,  and let Yt ..... Ys denote the distinct equivalent classes. Notice 
that we always have [Yi[ = 1, 2, or 3. 

822/66/5-6-10 
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For each Yi we apply Lemma 2.1 for the ~(Jj~) w i t h j e  Yi and define 

J#r, = E zjJ~ 
J+ Yi 

where z/=O, ___1 with Zg+Yi Iz/l +~0, and 

D7 Dy+ 
j e  Yi 

We then have that (3.5) can be written as a convex combination of the 
same type, but with (al) holding, given by 

H [F(gT[(k + 1,+,a,x); n) 7(]=+)] e 13+/A+'(m 
n ,j~A~+ 1 

where each Yj is either identically 0 (and in this case /3 /= ~ )  or 

Y j = J #  Yi 

for some i = 1, 2 ..... s, with 

y, (ff e x p [ - f l h  k+ ~(J#, r,,'n~q,J (3.9) 
l~ Yi 

where 

hk+l(Jr,#;n)=h(Der,;n) - ~ h(D 7;n)  
/~ Yi 

D j - D  # c / k + l ( j )  is such that - -  Yi 

J+A~+I Je+U(k+t,j,o,;.) 

where Y<<k + 1,/,a,;:) = # and J ~  (k + l.j,2),).) 

S~+ 1 ( . )  = H A ( .  ) __ 2 h ( D ( J ) ;  n )  

J E ~k + l 

with ~ + 1 =  {~((k+l,j,~,~); Yj}j~A~+~. 
We now return to the estimate of ~'j. 
Given ' * JEAk+I, let N~ be the number of components of ,lj on the 

previous scale k, i.e., 

N ~ =  2 I%1 E lazl 
i=j,j+_ 1 l~lkk+l(i) 
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We consider several cases: 

(i) N~>2.  In this case we define ~ k +  w,~,;~ = ~(k+~,j,~,;4 and notice 
that (3.6) and (3.9) give us 

if 6 > c~(c~- 1) / (2-  ~) and dl is sufficiently large. We define J j =  Yj. 

(ii) N~ = 1. Here we consider three subcases: 

(iia) lYjl/> (log dk) p. We let ~ k +  1,j,6,~)= ~(~ + 1,/,6,x) and Jj = Yj. Then 
(3.1) follows for Jj in the (k+  1)th scale from (3.6) and (3.9), since if d~ is 
sufficiently large, we have 

(log dl) p-2 > ~(6 -I- ~) 

(iib) ]Yjt < (log dk) p and Q j  = O. We decompose Yj into two weighted 
jump densities, Y) and Y2, where i J), ~),/3)) is defined by 

for 

with i' such that supp Yjc[k(i') and 

Then Y2 = (Y2, ~'2,/32) is given by 

J 2 - 0 ,  = 0, and 15 2 ~ /3)  = 

with/3)  w/3 2 =/3j. We let J j =  Y2 and 

~((k + l,j,&2)= Y((k + 1,j,6,)~)U {,7) } 

and notice that the latter is a (k + 1,j, 6, 2)-sparse neutral ensemble. 

(iic) [Yj[ <(logd~) p and Qyj#O. We define A/ik+l,j,~,~)=S~(~+w,~,~) 
and use Lemma 3.3 to obtain 

~'j~ 3 \ log 3][2--~:dk '~ (----~--k)dk+l -r ex p [ ~ ) t Y j l ] - - ( 2  + 1 

1 
~ dk+61~ + 1 exp [ - - (~  + ~ +  1 ) ]Jj]] 

if 6 < f l ( 1 - a ) -  ~ and d~ is sufficiently large. 
This concludes the proof of Lemma 3.2 and Theorem 3.1. 
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4. P R O O F  OF T H E O R E M  1.1: PEIERLS A R G U M E N T  

We now will show how to use Theorem 3.1 to estimate expectations 
and prove Theorem 1.1. 

For any /3 > 1 we pick 1 < ~ < 2, d, sufficiently large, and positive 
numbers 2, 6 such that 

~g(1)~<2~< g(1) - log d----- ~ 

and 

~ ( ~ - 1 )  

2- -~  
- - < 0 < / 3 ( 1 - a ) - - ~  (4.1) 

Notice that (4.1) requires/3 > (1 - a )  -1 e / ( 2 -  e), which can always be 
satisfied for /3 > 1 by picking c~ sufficiently close to 1 and d~ sufficiently 
large, since lim< ~ ~ a = 0. 

Let ~ be given by 

Kl(1, g, d l )=d~  -a -~+l  

From (2.10) we have that for any g(1)>~ g a n d / 3 >  1, 

Ki( f l ,  g(1 ), d~)< Kl(1, g, dl) 

(4.2) 

and Theorem 3.2 asserts that the external height partition function can be 
written as 

Y Z~(h) =~ c~Z(N,a,~/h) 
Y 

where c~ > 0 is such that Z~ c~, = 1 and for each y, 

Z~N,a,~,)(h) = ~ D,,(h)r-t~ "n) (4.3) ~ '  ( N , 0 , 5 , 2 )  ~ 

n 

is an (N, 6, 2)-regular external height partition function. 
Hence, the external height expectation (1.5) can be written as 

Ey c~lg~N,6,)t)(h) 
<en(h)> A = E y  cyg~N,g,).)(O) 

= ~'~ d Z~N,6,2)(h) (4.4) 
? 

where d r is such that Z~ dr = 1. 
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Notice that since ((J)~>0 for a n y  J E J ~ / ' # N , 0 , 6 , 2 ) ,  it follows that 
Z~N,a,;.)(O ) ~> 1 > 0 and (4.4) is well defined. 

7 Let us fix 7 and set ~ = A/'(N,O,a,2 n and Z ; ( h ) -  Z~u,a,~o(h). Since the 
only n-configurations involved in the partition function Z X are those 
determined by the J's in X ,  (4.3) can be expanded to get 

Z~-(h)= ~ (,exp[nJ'(h)] exp[-flH(Jg;nS~ (4.5) 
o" E ~V" 

where ~ . =  {a:JeJV'--+aje {0, 1, - 1 } } ,  

Ja = E G j J  
J ~ X  

J ~  ./V 

n'~ = Y n k hk 
kEZ 

Jr is given by (3.8), with where nj 

D(Jo)= ~ D(J) 
J c  ./r 
~-j~O 

and 

n) = y. h(D(J); n) 
Jc JV" 

s ~ = - n f  ~, ( , = ( _ ~ ,  and H ( J ~ ; n ) = H ( ~ ; - n ) ,  (4.5) can be As nj 
written as 

Z~(h) = ~ ~ cosh nJ~ e x p [ - f l H ( ~ ;  ngQ] (4.6) 

Given J~, we now need to estimate n J~. Notice that nf ~ gives the height 
of the jump density J~,at j~  A and the neutrality of J~  jIr implies that the 
height n s~ depends only on the variables JE ~y defined by 

Xy = { Je  ..~: iD(s) < j < i~(j)} 

In particular, 

nf~=0 if a ~ ~ / ~ )  (4.7) 
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Let us fix a ~ N x  with a j # 0  for some Y e ~  and define 56~v-  by 

{0 a if J = Y  
j o t h e r w i s e  

We then have 

ny + lYl 
T 

Iterating this expression and using (4.7), we obtain 

.<1 ~ la,] IJl (4.8) nJ~"~2 JE~j 

We now are ready to.prove Theorem 1.1. Let h be the one-point 
external height density with Xo = 0. From (4.6)-(4.8) we have 

IZ~(h)l~< ~ ( r  ~ ~,~ ,exp[ - f lH(JV ' ;ng~+ng~ ' ) ]  (4.9) 

As ~(J)>~ 0 we have 

Z~(O)= ~ ~o,e ~H(.&,,4')>/ ~] ~,e  ~H(~V;#~') (4.10) 

To complete our Peierls argument, we will need to perform a cancella- 
tion in each term of (4.4). This will be done by using the following lemma: 

L e m m a  4.1. Let a ~ ~ro, or' ~ ~ / / ~ o .  Then, if d 1 is sufficiently large, 

3 H ( Y ;  ~r, or') = H(JV'; n 4 + n s~ - H ( Y ;  n J<) ~> 0 

Lemma 4.1 will be proved in Appendix B. 
In view of (4.9), (4.10), and Lemma 4.1, it follows that 

IZx(h)l h ~ 
Z.m(O~ ~< * ~ 0  ~ ff~ cosh T Ig, l 

I ~< 1-] 1 + 2~(J) cosh -}-IJI 
J~X0 

(@' 1 <<. 1 + 6 d ; a  e -  2.~ cosh h ~ 
k = l  

~< exp(0e -2~ cosh h ~ 
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provided Ih ~ < 22, where 0 = O(d~, c~) is a positive constant independent of 
7 and A (recall that I J] ~>2 for any J e ~ ) .  

This finishes the proof of Theorem 1.1(a). 

Given i, j, k ~ A such that i C j, we now let ~ j  ~ Jr be given by 

fij = {Je JV': iD(j) < i, j< i+(j)} 

and set 

Given 1 < No < N, let h be the two-point density with x o = 0, Yo = x 
such that duo< [xt <~duo+~. As in (4.9), the external height partition 
function Z y ( h )  can be bounded by 

'Zx(h)'<~ I] ( ~o (~,coshh---~]J~') ~ (,~,coshh~ 
I = O , x  a E ~,orl x 

X ~ ~ o e x p [ - f l H ( . / U ; n J ~ + J . ' + n e ~ ) ]  

~o �9 ~.~-/~r o ,~ :r~ 

(recall that f , j  u y'0 u X~ j = Y'~ w ~) .  
Hence, if Ih~ < 22, by using Lemma 4.1, we have 

[Zy(h) ,  { [1 +2~(J)  cosh ~ IJ , ]}  
Zy(0--------) ~< =~x j I]0 ~ 

x I] [l+2{(J')coshh~ 
J '  e Y'Ox 

f (+/  ] ~< [exp(0e -2;' cosh h~ 2 [ I  1 + d#ae 2;. cosh h ~ 
k = N o + l  

Thus, (1.12) follows and Theorem 1.1 (b) is proved. 

We now will show how Theorem 3.1 and Lemma 3.2 can be used to 
prove spontaneous magnetization in the one-dimensional Ising model with 
1~(i-j) 2 interaction. From Remark 2 of Section 3 and (4.1)-(4.5), the 
expectation ( 1 -  no) can be written as a convex combination of expecta- 
tions of the form 

/ 

~(1-nJ~)exp[-flH(JC;nS~)]/ ~ ~,exp[-flH(JV';nS~')] 

(4.11) 
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where N ~ =  {cr:JeJV'--+ {0, 1}}, J ,  and ~ are given as in (4.5), and 
n f e { 1, - 1  } is the spin value at j e A in the flip density J, given by 

Given j e A, let 

Clearly, for 
satisfying: 

(i) 

each 

n J = ): 
if j e ID(j) 

otherwise 

a e N ~ .  there exists at least one ~ o = ~ o ( ~ ) e ~ /  

For some Ye Jff with a j =  1, 

OJj = {0 
o-j  

if J = , 7  
otherwise 

(ii) nf~= 1. 

We let 

with co(a) being as above. 
We use {r 1> 0 and Lemma 4.1 to obtain that (4.11) can be bounded by 

~< 2 ~ ~ exp[--flH(,A/'; nS~)] 
a a ~x~ 

4 2 sup ~(.7) 
Y~JV" 

( 2 )  2 
6 ~ dlae -~g~ 1 

if g(1) is sufficiently large. 

2 
o o e ~  

Go, exp[-fiH(,A/';  nZo)] 

A P P E N D I X  A 

Proof of Lemma 3.3. Given j o e A ~ + l ,  
b=D(Jieo ), it=I~nA~', for l<~k, 

j ~ l k  

let ~ -  # J-J~o as in (al), 
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Clearly the collection {/9, {D(J)}j~ j } has disjoint support and 

[) U D(J)=I~ 
J E S "  

(see definitions in Section 3). 
Let ioeI~+l(jo ) as in assumption (al) and set 

S = Ib/I(io, 3d~) = S -  u S + 

(A.1) 

where S+- is the connect interval of S at the right (left) of io, i.e., 

Z "+ = { j ~ Z ' : j > i  o ( j <  io)} 

We also need to introduce 

2 = { j ? ~  D(J)}c~Z=2 w2  + 

where 2 +- is defined as above. Notice that due (A.1), we have 

z / 2  = b (A.2) 

Now let M be as in the assumptions of Lemma 3.3. By neutrality of 
J e A~ we have 

h ~+ ' (Z  n " )  = h ~+ ' ( Z  n ~) (A.3) 

[see definitions (3.7) and (2.9)]. 
From (A.2) and assumption (al) , (A.3) can be bounded by 

>>. q2 ~ Zz-/2 (i) g(i--j)Zr+/2*(J) 
4J 

>~q2 ~ {Zz-(i) zz+(j)-- [Zs-(i) z2+(j)+z2-(i)zz+(j)]} g(i--j) (A.4) 
i , j  

where ZA(1) = 1 if leA and 0 otherwise. 
From assumption (a2), we have that the first term in (A.4) can be 

estimated by 

Zz-(i) g( i - j )  Zx+(J) >1 (1 - b) log d~+~ (A.5) 
i , j  Ulc 

where b = b(c~, dl) is such that lima~ ~ ~ b = 0. 
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The two other terms in (A.4) can be estimated as follows. Let us 
decompose Jl? according to the scale of its components, i.e., 

k - - I  

~ ? =  U ~ (A.6) 
/ = 1  

where ~ =  {J~:je],+~}, with Jl  being an (l, i', 3, 2)-admissible neutral 
jump density for some i '~ Itt+ ~(i). 

In view of (A.6), 

k 1 

/ = 1  

with Zz= Oj~w~D(J) and by taking dj large enough, we have 

k 1 

Z~-(i) g(i-- j)zs+(j)=~ ~ Z~7(i) g(i-j)Zz§ 
i , j  i , j  l =  1 

k~l 3 d 1 <~2~ ~ , Z Z z - ( i ) ~ z z + ( J )  
�9 l =  1 i ~ i l + l  

~ 1 dl dk+l 
~< C ~ log - -  

t= 1 dk 

dk+ 1 
~< C' log - -  

dk 
(A.7) 

where C' = C'(a, dl) is a positive constant such that C' --, 0 as dl ~ vo. 
Lemma 3.3 follows from (A.4), (A.5), and (A.7). 

A P P E N D I X  B 

Proof of Lemma 4.1. We let ~ r ~ 0 ,  a ' ~ x / a ~ 0  be fixed. As in 
Appendix A, we decompose JV/3f 0 according to the scale of its components, 
i.e., 

W/Xo = U 
l~>l  

where each J e  (J~'/Y'o)t is an (l, i', 6, ),)-admissible neutral jump density for 
some i' ~ Ilt+ 1(0 and i e A t. 
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We have 

AH(JV; a, #) 

> E s E E [(n~--nJ')2+2(n#--n}Qn}]g(i,J) (B.1) 
i e  D(Ja) l>~ 1 J E (,#'/Yb)/ J e  D(J)  

From (3.8), n J~= hJ~ for all jE D(J) and because of the neutrality of J 
and (3.8) we have 

Z n~=~ J(k) Z g(i,j) 
j ~ D(J)  k k ~ j <~ i+(j) 

<~ d, ~, J(k) g(i, j) 
k 

[recall i~ = sup(inf){i c D } ], which leads (B.1) to be bounded by 

i eD(Ja )  l>~l JE(./V'/,~-O)I 

where 

Me(J,J~)=lnJ~--fiJq ~ -J(k) g(i,k) (B.2) 
k E D(J)  

Lemma 4.1 follows if Mi(J, Ja)>/O for any JE(~U/5~o)t, l>_-2, and 
i~D(J~). 

It follows from the construction given after Lemma 3.3 that 

1 dt (B.3) Inf=-fiJq=O if dist(i,D(J))<xd,+l- 

From (B.3) and neutrality of J we have 

E ' ' ] k J(k) g(i, k) <~ C ]JI ( i -  ZD(j)) 2 (i-- t:-+(j)) 2 

d l  
~<c' IJI 

I i - -  iD(j)[ 3 

dl 1 
(B.4) C1 [J[ dl+ 1 ( i -  iD(j))  2 
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for a fixed constant C 1 . On the other hand, 

g(i, k )  >~ C2 dz (B.5) 
tD(j)) K~D(J) ( i - -  " 2 

for another fixed constant C 2. 

Conditions (B.4) and 
J E ( A/'/Ys since 

(B.5) imply that M i ( J ,  Jo)>~O for any 

dt IJI ~< dt d,---~l ~ (log d,) p 

can be made arbitrarily small by choosing d I large enough. 
This concludes the proof  of Lemma 4.1. 
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